Chapter 7 Interest Rate Risk
Durations
- Macaulay duration: The present-value-weighted average time to the cash flows
\[D_{mac}(\delta)=\frac{\sum_tt\cdot CF_t\cdot v^t}{\sum_t CF_t\cdot v^t}=\frac{\sum_tt\cdot CF_t\cdot v^t}{P(\delta)}=-\frac{P'(\delta)}{P(\delta)}\]
- Modified duration: The sensitivity of price to change in the interest rate
\[D_{mod}\left(i^{(m)}\right)=-\frac{P'\left(i^{(m)}\right)}{P\left(i^{(m)}\right)}=\frac{D_{mac}}{1+i^{(m)}/m}\]
\[\lim_{m\rightarrow\infty} D_{mod}\left(i^{(m)}\right)=D_{mac}(\delta)\]
- Effective duration for interest-sensitive cash flows
\[D_{eff}=\frac{P(i+\Delta i)-P(i-\Delta i)}{2\times\Delta i\times P(i)}\]
- The relative price changes with (small) changes in the nominal interest rate
\[\frac{\Delta P}{P\left(i^{(m)}\right)} \approx -\Delta i^{(m)}\times D_{mod}\left(i^{(m)}\right)\]
Convexity
- Macaulay convexity
\[C_{mac}=\frac{P''(\delta)}{P(\delta)}=\frac{\sum_tt^2\cdot CF_t\cdot v^t}{P(\delta)}\]
- Modified convexity
\[C_{mod}=\frac{P''(i^{(m)})}{P(i^{(m)})}=\frac{\sum_{t}t(t+1)v^{t+2}CF_t}{P(i^{(m)})}\]
- Effective convexity
\[C_{eff}=\frac{P(i+\Delta i)+P(i-\Delta i)-2P}{(\Delta i)^2P}\]
- The relative price changes with (small) changes in the nominal interest rate
\[\frac{\Delta P}{P(i^{(m)})} \approx - D_{mod}(i^{(m)})\times\Delta i^{(m)}+\frac{1}{2}C_{mod}(i^{(m)})\times(\Delta i^{(m)})^2\]
- The duration and convexity of a portfolio
\[D=\sum_{k=1}^n \frac{P_k}{P}D_k\]
\[C=\sum_{k=1}^n \frac{P_k}{P}C_k\]
Immunization
Definition: immunization is a process of protecting a financial organization from changes in interest rates.
Conditions for Redington immunization protecting against small changes in interest rates:
\(P_A=P_L\)
\(D_A=D_L\)
\(C_A>C_L\).
Full immunization protecting against any changes in interest rates:
\(P_A=P_L\)
\(D_A=D_L\)
\(T_L\in (T_{A_1},T_{A_2})\).
Cash flow matching: solve a system of simultaneous equations.